NOTATION

j, mass filtration velocity; p, fluid pressure, Pa; T, temperature; i, enthalpy; p, fluid density, kg/m?
w, fluid viscosity, N » sec /m? m, porosity of the medium; k, permeability of the porous medium, m? A, thermal
conductivity of the fluid—porous-medium system, W/m - deg; C, volumetric specific heat of the porous medium,
J/(m3 . deg); Cp, specific heai of the gas at constant pressure, J/ (kg - deg); C', specific heat of the liquid,
J/ (kg - deg); K, compressive bulk modulus, N/m?% a, coefficient of cubical expansion, deg~1.
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STEADY-STATE PROBLEM OF LOCAL PORE COOLING

V. V. Faleev UDC 536.244

The temperature field in a porous half-space with filtration of coolant from a source is examined.

Pore cooling has come into use in recent years in several sectors of modern industry to protect various
structural elements from high heat fluxes. The high efficiency of this method of cooling is due to the developed
surface with which the coolant is in contact during its motion through the porous medium. As a result of this,
heat is absorbed, and the boundary layer at the leakage surface is transformed in such a way that heat transfer
from the high-temperature gas flow to the wall being protected is reduced.

Together with the continuous supply of coolant through the wall [1], in our opinion coolant can also be
supplied to certain local zones in some cases. This produces zonal pore cooling and creates the thermal re-
gime reduired for the most heavily thermally stressed sections.

An important task in designing such systems is studying the temperature fields inside porous materials
with allowance for the filtration processes occurring. To solve this problem, it is first necessary to construct
the solution of the two-dimensional filtration problem and obtain the pressure distribution in the porous body.
The heat-transfer equation can then be used with this data to find the temperature field.

Let us examine this problem using the example of coolant flow in a porous half-space (Fig. 1a [2]). We
will agssume that the cooling gas is moving in an undeformed, uniformly porous medium from a source of inten-
sity 2M, located af point A, to the leakage surface. Constant pressure p, and temperature T, are maintained
at the leakage surface, while the pressure and temperature at the source are p; and Ty, respectively. The
thermophysical characteristics of the gas and the porous material are assumed to be constant, and equality is
maintained between the temperatures of the body and the coolant at any point of the filtration region.

The gas flow in the porous medium obeys the resistance law
i V) 5
— gradp= — 1L V. (1)
w(T) 1%
The process of heat and mass transfer is described by the equations:

AT —cpV grad T =0, (2)
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Fig. 1. Diagram of the region of coolant
flow in the porous half-gpace.
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We employed a hodograph transformation of the filfration rate, transforming the investigated region in
the plane 7, 8 (Fig. 1b) into an infinite strip where there exists a certain function Q(7, 8) which satisfies the
Helmholtz equation. Successive use of Fourier's theory of generalized integrals, the theory of analytic functions,
and the Weiner—Hopf method to solve this equation allows us to obtain the following relations for the sought

function [2]:

at v >0
_ B N o kD (1) exp (— ry1) .
Qe B = 2 expen) - o) B 1y B SR (4)
= ¢ (e) (5)_}::‘( ) PP sin &f}
at <0
D(e) 1 exp (Si) . 2k—1 (5)
wh== Ef Y S G—aeiy g P
where
®(e) = — n 2k &S o=V e

pe1 2B—1 e—1y

(2% — 1§ - _ = Qk—1 Zdry )
:V/“4 o 0= 0= o,

The relation

dx¥ = — [—1—— exp(— ¥Vn + 1 1) cos fdP* -+ exp (— 7’;—??) sint ﬁd\b*} 6)
permits us to change over from 7 to the physical coordinate x*.

Allowing for (4), (5), we find the pressure distribution from the source to the leakage surface with g3 =7,
here integrating the relation

dP* = opr dv oP* dp
01 op
with the use of system (3) and the substitution
l P* = Qexp(— eT). (7)
As a result, we have
pr 1 1 . {é D (ry) expl— T (r — )] — | }
e e e e =) ®

Equation (8) can be represented in the plane of the physwal coordinates by means of the relation x* =f{(71)
with 8 = 7. Integrating (6) from 0 to « with the use of (3), {4), and (7), we find
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Fig. 2. The relations with n =1: 1) P* y~1 =f(x*); 2) x* = (7).

Fig. 3. Temperature change along the x* axis (M =6 - 107 m?/sec, A =
3W/m - deg) with the flow of: 1) air (Kn = 0.15); 2) helium (Kn =0.1); 3)
hydrogen (Kp = 0.15).

/

sV ynoa v ‘ o RO (rp)exp[— T+ 0] —1 ’ (9)
o T P e () e S SR e

where 7 = (n +2)/2( + 1)Y/% The graphical description of (8), (9) with n =1 by means of a computer is shown
in Fig. 2.
We obtain the temperature field distribution inside the porous half-space in the flow of an ideal gas from

the solution of Eq. (2). This solution, with allowance for (1), can be represented as follows in curvilinear or-
thogonal coordinates p, y {pressure, stream function) {3l

O [ R T ) O_T] o[ etV 91]» ¢ T (10)
op L apiiV ap | oy | RW( Ty oy vodp

As shown in [3], for a linear resistance law the temperature is a single-valued function of the pressure,
and (10) is transformed into an ordinary differential equation which can be easily integrated. With nonlinear
filtration, the problem is complicated considerably. However, if we approximately assume ¢ = (fV)/V ~ const,
then, as before, we can suppose that the temperature is a single~valued function of the pressure and, instead
of (10), write

a1 -1 e
,si_[ R™u(D) T g Eh_c_ﬁzg_ (11)
dp aptt dp Lodp
Integrating (11}, we obtain
n+1 -1
dp=B_T 8D 7 (12)

Fpi(D—T)

where F =ca/A£; D is the constant of integration.

1t is physically evident that the presence of a single point source in the investigated region presumes a
value p; =«. Then, assuming that p, = 0 on the leakage surface and then integrating (12), we find that D = T.
Having made the substitution

pn+1

dP = —t—
Tn+l Rn-rl }L(T)

dp,

instead of (12} we obtain

dT

dp = ——
= Fn—1



From which we have

T =T, — (T, — T3 exp(— FP). (13)

Equation (13), with allowance for the pore cooling criterion [4] and the dimensionless temperature T* =
(T — Ty/ Ty is reduced to the form

/ *
T* =T exp (—Kn —}—)— —Z—O—> .
x 0§

Figure 3 shows the temperature distribution in the porous half-space in the flow of air, helium, and hy-
drogen. It can be seen from the graph that, to maintain a certain thermal state in the porous body during cool-
ing with a gas, it is best touse a substance with a lower molecular weight.

NOTATION

T, temperature; c, specific heat of the gas; p, density of the gas; A, effective thermal conductivity of the
porous-body —coolant system; 7, 8, Chaplygin variables; n +1, degree of filtration (filiration is linear at n = 0);
x = ViM /P, dimensionless filtration parameter; y* =y /M, dimensionless stream function; P* = P/ P,
dimensionless pressure; «, constant characterizing the porous medium and coolant; u(T), absolute viscosity
of the gas; £(v), function determining the filtration law in each specific case; x* = x/d, dimensionless coor-
dinate; d, characteristic dimension; R, gas constant.
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THEORY OF THE FLOW AND CONDUCTION OF
INHOMOGENEOUS MEDIA
I. BASIC MODEL OF AN INHOMOGENEOUS MEDIUM

G. N. Dul'nev and V. V. Novikov UDC 536.21

A basic model of an inhomogeneous medium is outlined and, by a combination of the methods of
flow theory and reduction to an elementary cell, an analytic dependence is obtained for the con-
duction of such a medium. :

In studying the conduction of inhomogeneous materials with a random distribution of components, there
has been steadily increasing use, in recent years, of a new method of investigation, called flow theory [1~-3].
For a binary inhomogeneous system, in which the conductivity of one component A; = 0 is nonzero, while the
other is zero A, = 0, the effective conductivity A, according to flow theory, is (31
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